What makes the Texas Tone 12™ different from a Princeton amp?

Recently, I was showing a new amp build to a friend of mine.  After telling him a bit about the amp, a 14W tweed style combo with tremolo, he rightly asked, “What makes your Texas Tone™ amp different from a Fender Princeton amp?”  It’s a good question.

The Princeton wasn’t in mind when I designed this amp, although I used to play through a mid ’70s Princeton (AB1270 with a 5U4 rectifier), in a band with this friend.  I used the Princeton both in the studio and on live gigs. I eventually sold that amp because I couldn’t get loud enough unless I had my Tele wide open on the bridge pickup, and couldn’t get good distortion unless I was using the neck pickup. Now the Tele bridge pickup wide open is not a bad sound, it’s just not appropriate for every song and every situation.

I often play my Tele with both the bridge and neck pickups together, and I often roll the tone control off a bit, no matter what pickup I’m using.  I like the flexibility.  I couldn’t get either the volume or crunch that I wanted. So, I went home, pulled up a Princeton schematic and did a comparison.  What I found is are some interesting thoughts about amp design.

Leo Fender intended the Princeton to be a student amplifier, using in teaching studios and bedrooms.  Of course, I’ve known many people who have used them on gigs and recording sessions, myself included.  In my opinion, it’s fine for not only its intended application, but for use on small gigs, such as coffee houses, and recording, as long as what you want is clean and bright.

So, here’s a synopsis of the differences between my Texas Tone 12™ and the AA964 black-faced Princeton amp. Compared to the AA964 black-faced Princeton, the Texas Tone 12™ has:

  • Cathode biased power tubes vs. fixed bias. The cathode bias I use is somewhat cooler than a 5E3 (the reference for tweed, low wattage, single 12” combo amps for blues and rock), as I find the tone to be much richer that way, and rich tone is what these amps are all about.  Better living through better tone, I say.
  • No negative feedback vs. negative feedback on the Princeton. NFB reduces distortion and gain, while slightly enhancing treble response by attenuating low frequencies. A feedback loop helps create a cleaner signal that goes into cutoff distortion at a much higher volume setting (which ties in with why I wanted to move on from the Princeton). The cleaner sound of NFB is good for clean headroom (a la black-faced Fender amps), great for country, jazz, and Hi-Fi. I find amp headroom in other ways.
  • A 12AU7 cathodyne phase splitter vs. a 12AX7. The single-triode cathodyne phase splitter is slightly-less-than unity gain (about 0.9), meaning there is no voltage gain (actually a slight loss). The 12AX7 tube triode is a voltage amplifier, while the 12AU7 is a current amplifier, and therefore more suitable to cathode follower/cathodyne applications, and can drive more current to the output tubes.
  • The Texas Tone 12™ operates at a higher B+ voltage, and has a beefier output transformer.  Since cathode biased amps tend to have less output power than fixed bias amps, all other things being equal (which they rarely are), the higher voltage level gives me more flexibility to help recover some of that loss while operating at a more reasonable bias than the hot-biased Fender tweed amps. Besides richer tone, the slightly cooler bias leads to longer power tube life. The beefier output transformer has a richer tonal response and more power handling capability.
  • A Jensen speaker that is both higher end and larger (C12Q vs. C10R) than the one on the Princeton. The result is a louder, fuller tone.
  • A subtle and full range discrete Tone control and independent Volume control vs. interactive Volume, Treble, and Bass controls. Easy, full range of tonal coloration and less insertion loss.  It’s not quite as “bright” as a tweed 5E3, although brightness is not lacking.  I get it back in other ways.

Both amps use a grid bias tremolo, although the component values are different and the Princeton acts on fixed bias power tubes while the Texas Tone 12™ acts on cathode biased power tubes. As far as the tremolo goes, everyone who has played or heard this amp raves about the tremolo.

The combination of higher voltages, a 12AU7 PI, reasonable cathode bias, no negative feedback, a beefier output transformer, and a larger, louder, full-range speaker enable the Texas Tone 12™ to be amazingly dynamic and touch responsive, while the single Tone control allows the simple freedom of varying the amount of warmth or sparkle. When the University of Illinois Physics department did an analysis and upgrade of a Weber 5E3 kit, they found that, after their many mods, “the sound of the amp was great, but in many instances the amp without the feedback loop sounded more interesting.” They go on to elaborate. I concur.

Better living through better tone.



I like tremolo.  I like the way it sounds.  It sounds great on a Rhodes piano and it sounds great on a Fender guitar.  It’s a great effect, and used on lots more songs that just Crimson and Clover.

Leo Fender added a tremolo effect to his guitar tube amplifiers in the 1950s with the introduction of the Tremolux and Vibrolux amplifiers.  For some reason, marketing perhaps or a misunderstanding, Leo often called his tremolo effect a vibrato, and he refereed to his vibrato arms on his guitars as a tremolo.

Just to set the record straight, tremolo is the varying of the amplitude, or volume of a sound, while vibrato is variance in pitch.  The “Fender Synchronized Tremolo” on a Stratocaster is a vibrato effect, while the “Vibrato” on Fender blackfaced amps is, in actuality, a tremolo effect.
The first guitar tube amp tremolos used what’s variously knows as “bias wiggle”, “bias vary”, or “grid bias” tremolo.  This is what my amps use.  Later amplifiers used different, more complex, or more advanced tremolo circuits

Grid Bias Tremolo

A 12AX7 tube triode high gain stage (one triode half of a dual triode 12AX7) is normally used as a low frequency oscillator (LFO), as high gain is a requirement for the LFO to work. (The other half of the 12AX7 is often used as the phase splitter for the push-pull output section.)  To produce the oscillation, the output of the tube is fed back to the input after being processed by a series of capacitor/resistor (RC) taps- three capacitors in series, with a resistor to ground after each one.   Each RC filter produces a phase shift, and cascading them in series causes the gain stage to go into an oscillation.  There is often a footswitch to lift the ground of the circuit, which turns it off.
By carefully selecting the value of the resistors and capacitors, the designer can set the speed of the oscillation.  Typically, tube amp LFOs have a base rate of anywhere from 1 to 12 cycles per second.  (A tremolo rate of between 4 and 6 cycles per second seems to be the most pleasing to the ear.)  One of the resistors is usually a potentiometer that is used to vary the speed of the oscillation.  When playing guitar through a tremolo, 1 cps is really slow, whereas anything above 3 cps is pretty fast.  Sometimes you want that really slow, relaxed sound, and sometimes you want that fast warbly sound.  It depends on the style and the song.
Once the LFO is built, we have to find a way to use it to vary the volume of the amp.  The “bias wiggle” version takes a tap off the LFO output, runs it through a DC blocking capacitor, and then to a potentiometer that is used as a Depth or Intensity control.  The output of this is fed to the grid bias of the output tubes.  The effect of this oscillation on the output tubes bias voltage is to cause the gain of the tube to fluctuate, and, voila, we have a volume-altering tremolo, where we can control the speed and depth, and click it on or off with the step of a footswitch.
This tremolo is lush, warm, and pulsing, a “hypnotic slam effect”. And everything was fine.

Photo-Cell Tremolo

However, Leo was a tinkerer, and always striving to make things better.  If the coupling capacitor were to fail, and high voltage DC was introduced into the grid circuit of the output tubes… well, bad things could happen, like blowing out the tubes or even transformers.  Leo wanted to isolate the LFO from the grid circuit.  He did this by using a lamp and an optocoupler (light-dependent resistor).  The LFO voltage was used to turn a lamp on and off, and the optocoupler then effected the grid bias of the preamp circuit.  This had the desired result of isolating the high voltage from the grid, but it changed the sound of the tremolo.  The optocoupler was more of an on/off switch than a variance, taking away some of the lushness.  Still, many like the deep sound of this tremolo. The parts count and cost was still low, and while it was great for a Princeton or Deluxe, but Leo wanted something better on his higher end professional amplifiers.

Harmonic Vibrato

His solution was a completely new design.  In a 1958 design R. H Dorf patented “a combined tremolo-vibrato system for use in an electronic musical instrument.  Mr. Dorf used an LFO to control the input of his vibrato triode, and the bias of his tremolo triode, and used high- and low- pass filters to prevent sub-audible tones from reaching the power amp, and to keep his effect of the bass notes. 

imageThis design, that “divided signals into components of equal magnitude and opposite phase,” was one influence on what Fender called the “Harmonic Vibrato”. 

This multi-tube circuit split the high frequencies from the lows, and then separate out of phase LFOs for the highs and lows.  The highs were becoming louder while the lows were getting quieter, and vice-versa (see drawing below).  This produced a very rich and lush tremolo that people still argue about- whether or not this effect produces a phase-shifting pitch change, a vibrato. My best answer at this time is that the swirling effect of the highs and lows isn’t a true vibrato, but when it reaches our ears the changes in intensity of the highs versus the lows can be interpreted as an apparent pitch change, when it really isn’t a pitch changing effect.


The Digital Age

I have a DigiTech RP-150 multi-effects pedal that I like very much. It uses the modern digital technology – effects on a chip –that’s used in most modeling amps.  I use it with headphones for practicing, often with the built in drum machine.  I connect it via USB to my computer, and play along with music recordings, or I use it to for recording tracks.  I’ve also used it live on numerous occasions.  One of its many effects is tremolo.  I used this to add a tremolo guitar track to a song that we used at my oldest daughter’s wedding for the father-daughter dance.  I bought the mp3 from Amazon, and then used my RP-150 and Audacity to add a tremolo guitar track.  The results were very pleasing.

I also built a transistor tremolo foot pedal to add tremolo to my Palomino V-16 amp for playing live and recording.  It sounds pretty good, and and gives a nice pulsating tremolo tone.  I used it every time we played Bob Dylan’s Everything is Broken.

Sometime after I built my first tube amp, with tremolo, I decided to do an A-B-C comparison.  I had been told by professional guitarists that my old-fashioned grid bias tremolo sounded very good, and wanted to put it up against my other tremolo effects. So, I did.

I hooked everything up, and played them one against each other.  Third place? The digital tremolo.  What sounds great on a PC or in headphones or in a recording environment, is not necessarily what works live.  See my post on why you can’t sound like your favorite guitarist. Second place?  The tremolo effects pedal that uses transistors.  The sound is more organic, more rich.  The clear-cut winner though, was the real tube tremolo.  Oh, my nothing beats the real thing, baby!

There is a richness, a depth, a feel, to tube tremolo that just can’t be gotten any other way.  Just as a good tube amp will be rich with a dynamic touch responsiveness to go from clean to crunch just by varying your right hand on your guitar, tubes give a rich tremolo sound that approaches the swirling sound of a rotating speaker.

This is why I build my amps the old way.


While tremolo was the first on-board guitar amp effect, and went out of favor in the late ‘70s, to be replaced by distortion, it’s still a widely-used effect, that can have a very pleasing effect to the ear on the right song.  Whether a slow ballad or a jazzy up-tempo number, a little tremolo can add a nice touch.

Tuning Your Sound – Speakers

Some people consider amps to be appliances; I’m not one of them.  They claim that your sound comes from you and your guitar.  That’s true, up to a point.  Without the amplifier, no one is going to hear you or your electric guitar.  Without a speaker, no one will hear what you, your guitar, and your amp, produce.

Just as tires are the most important safety feature on an automobile, the speaker is a key ingredient of your sound.  Many tube amp players “roll tubes” – change tubes to get a “better” sound.  Perhaps that money would be more well spent by choosing the right speaker for your needs. The sound coming out of the speaker is what people actually are hearing.  To neglect the speaker is to discount the final, and vital, link in your sound chain.

My first amp had an Eminence OEM Fender Special Design 12” speaker, the one that comes standard on many Fender tube amps.  It sounded good.  Nice, rich tone, with lots of chime.  I loved the tone, but wanted something a little louder to make up for a lack of headroom in a ‘50s tweed style guitar amplifier.  After much research, I selected an Eminence Cannabis Rex.  According to Bill M,, the Fender Blues Jr. expert, the Cannabis Rex is “very efficient, one of the loudest speakers you can put in an amp, and it pushes out pretty, round bass notes really well.”

After installing the new speaker, not only was the amp louder, the difference in tone was startling! It was almost like getting a different amp.  While changing from a JJ 12AX7 to a Tung-Sol to a Mullard to an Electro-Harmonix may produce a noticeable change in tone, changing to a different speaker will most definitely produce a change.

Please note that the amp still sounds great, and I always get compliments on the tone.  It does sound different than it did before.  What was gained was loudness, more bass, a more full tone, and the highs are still crystal clear.  What was lost is that chimey sound.  While louder across the spectrum, the Cannabis Rex has a less pronounced midrange dip and high end peak, and more bass, and it doesn’t have that double high end peak of the vintage Fender Special Design.  As Bill M states, “This is the warm/clean jazz speaker!”

If there’s something you don’t like about your amp, or you want it to sound different, instead of spending $60 or more on new tubes, research a different speaker.  One of the best resources I’ve found is on the BillMAudio website speaker comparison.  He compares the Fender Special Design (Eminence) with speakers from Jensen, Weber, Eminence, and Celestion, giving good descriptions of the various speakers’ attributes.  His advice is that the speaker should be the last mod, after you have tweaked your amp for best tone.  I come from a standpoint that your amp already is working fine.  Maybe if you start with the right speaker, you won’t need to mod the amp so much.  You have to make that decision yourself.

Are You Sure Leo Done It This Way?

Leo Fender was a tireless innovator, and his tube guitar amps set the standard for the industry that continues today.  Many companies make clones or clone kits of classic 1950s and ’60s Fender amps; many try to be exact copies.  Most current production tube amps use circuits based on, or very similar to, those that Leo Fender tweaked over half a century ago.  Of course, tube circuits predate Leo’s amps, and he paid license fees to Western Electric on many of those 1950s amps for using their circuits.  A triode preamp circuit is a known quantity, and there are only two or three different variations of the basic stage one preamp.  The layout is one thing, it’s how you voice those tube preamp and power circuits that shape the tone or sound of the amp.  But what about the components of the amp build?  Do you need “vintage” components in a vintage-style amp?

Carbon Composition Resistors

Many boutique amps and vintage amps and kits use carbon comp resistors. Why?  Well, that’s what Leo used, and those amps have that long sought after sound.  Modern resistors are carbon film or metal film, and most modern amps don’t sound like a tweed Deluxe or Bassman.  Leo didn’t use those, and many people want the look and sound of a carbon comp resistor, because that’s what the vintage amps had.  But, wait a minute, there’s more to it than that.  Do carbon or metal film resistors sound the same as carbon comps?

What does a resistor sound like?  Nothing, unless you drop it on a hard floor in a quiet room.  Tube amps are built on basic math- multiplication and division.  Current equals Voltage divided by resistance.  Put a 100,000 ohm resistor on that 300 volt DC supply and it works out to 0.003 Amps, or 3 milliamps (300 / 100,000 = 0.003).  So, what’s the difference between a carbon comp 100K 1/2 Watt resistor and a 100K 1/2 Watt carbon film resistor or metal film resistor, and what are the assets and liabilities of each one?

Carbon comp resistors look cool.  They’re brown with colored stripes around them, and they look (and perform) just about exactly like those ones in Leo’s 5E3 tweed Deluxe or 5F6A Bassman, so they must be good.  Leo used them (so did other amp builders of that era).  OK, so why did Leo use them?  Here’s a real shocker.  He used them because it was what was available, and the price was right.

Carbon comp resistors have know qualities.  Among these are poor stability, with at best a +/- 5% tolerance, and it’s usually wider than that.  They will change value when stressed with over-voltages, and if internal moisture content (from exposure for some length of time to a humid environment) is significant, soldering heat will create a non-reversible change in resistance value.  Outside of guitar amps, they’re rarely used because modern resistors have better specifications, such as tolerance, voltage dependence, and stress. Carbon comp resistors also cost more today than carbon or metal film.

On the other hand, carbon film resistors have a working voltage of up to 600 volts, and have operating temperatures of -55C to 155C (-67F to 311F).  If your amp ever gets that hot or cold you will have other issues besides resistor performance!  Metal film resistors typically have a 1% tolerance, and possess good noise characteristics and high linearity due to a low voltage coefficient, and they’re very stable.

I like to use rugged MIL-SPEC, low noise, 1% tolerance, high temperature, 500V metal film resistors.  I also use commercial metal film and carbon film resistors. I use some carbon comps, but mostly to satisfy the desires of vintage amp buyers, not for any performance reasons.  The way I see it, if Leo Fender was alive today and building amps, he would use 1/2W carbon film resistors in his amps, because they are the lowest price resistors that have the right electrical and mechanical characteristics.

Cloth Wire

Old Fender amps and guitars (and most old amps and guitars) used this cool cloth covered wire.  Why?  Pretty much for the same reason that they used carbon comp resistors. It was cheap, it had the right characteristics, and it was what was available.

Today, we have much better wire. We have silver-plated, MIL-SPEC aerospace grade, Teflon coated, 600V, 200C wire.  It’s easy to work.  It’s flexible yet holds its shape, it takes solder well, and is small diameter, which is helpful in a cramped chassis.  It’s also pricey.

Less costly is the MIL-SPEC Tefzel coated, tin plated wire. It has similar ease of solder and work characteristics of the Teflon wire, is rated 600V, 150C, and is about half the cost of the above named Teflon wire.  We also have high-temperature MIL-SPEC PVC wire, which has many characteristics of the Teflon wire – takes solder easy, easy to work, small diameter, and is rated 600V, 105C, for about 1/3 the cost of the MIL-SPEC Teflon wire.

There is a new cloth wire out for those who prefer the vintage look.  After all, you may want to show off the wiring in your amp.  This has a cotton cloth braid over a 600V, 105C PVC insulated wire. It’s much easier to work with that the old-style cloth wire, and has superior performance characteristics to the good PVC wire, although it’s still not as easy to work with as the Teflon or standard PVC wire.

Use the new cloth-covered PVC if you absolutely must have the look of cloth wire in your amp, otherwise use a high temp PVC, Teflon, or Tefzel wire.  It’s also the same price as the aero-grade Teflon wire!  Don’t use any PVC or other wire that’s rated less than 600V or 105C.  85C wire has no place in a guitar amp.


I’m not sure I want to open this hornet’s nest, but here goes.  Capacitors are used as power supply filters (to reduce AC ripple in the DC power supply voltage), to block that same DC voltage from the AC signal path and couple tube gain stages together, and to bypass tube cathodes so that the amp gets the desired sound and gain.

Many of the capacitors Leo used aren’t available today.  Electrolytic capacitors are used as filter and bypass caps, and the ones we have today are very good. I use high quality European made electrolytics.  The controversy comes in when people talk about coupling caps.  The ones that Leo used aren’t made anymore.  No surprise.  There are lots of things from the 1950s that aren’t made anymore, and in spite of nostalgic dreams, much of what we have today is better. Televisions today not only outperform the old tube sets, they cost less.

Some companies today sell very expensive vintage style capacitors, and lots of people buy them.  You can easily find $120 .022 tone caps for you guitar, but a $0.79 Radio Shack ceramic disc will give you the same sound. The only signals that go through tone caps is shunted to ground!  You never “hear” any of the signal that goes through the tone cap.  One company makes vintage size electrolytic caps that are nothing more than a modern small size cap placed inside a larger container! They cost more, of course.

I like to use high quality Mallory 150 coupling capacitors.  Mallory 150 has always set the standard for top quality metalized polyester film, high voltage axial coupling capacitors, and that’s what I like to use.  I use high quality ceramic disc capacitors in tone and oscillator circuits.  I tend to stay away from orange drop polypropylene types.  These caps came into guitar amps in the 1960s, and are the heart and soul of the 1970s CBS Fender silver faced amplifiers.  They’re very stable, that’s the good part.  They were cheap in the ‘60s and ‘70s.  They’re stable and cheap and that’s why amp builders used them, not because they had superior sonic characteristics.  If you can find one, look up an old TV repairman and ask him if orange drops give a TV a better picture that a metallized polyester cap.  He’ll probably look at you as if you’re totally nuts.

In Summary

I build vintage-style amps.  To my ears and to the ears of those that play and hear them, they sound very good.  They have that vintage amp sound- the breakup, the tone, the dynamics, and the touch-responsiveness that make those 1950s tweed amps so much revered.  I get that sound by tweaking the component values while using modern high-quality components that offer better characteristics than the old-style components.  I don’t get that sound using vintage style carbon comps, orange drops, and cloth wire.

If you want the old-school components, I’ll make it that way.  It will certainly make it more “vintage”… and it will make it more expensive.

Point-to-Point Wiring?

Recently, I saw on a boutique guitar amplifier maker’s website that his amps feature “point-to-point wiring”.  I doubt it, and I don’t think you would want it if it were true.  Leo Fender did us all a favor when he dumped point-to-point wiring and started using tag boards in his amps.  In the 1950s, Fender amps earned a well-deserved reputation for serviceability and reliability, so much so that an amp could fall off of a touring bus or pickup truck bed, or be pulled out of a wrecked car, and still work.

What Leo did in his narrow panel tweed amps was to mount his components on sturdy boards with solder grommets for the passive components, and then he mounted the entire amp chassis to the top of the amp, with the controls facing up and the components facing the back of the amp.  Simply by removing the back panel, all electronic components were accessible, with the exception of the power and output transformers.

An amp that is wired point-to-point does not use any type of board for mounting components.  Resistors and capacitors are attached directly to potentiometers, switches, jacks, and tube sockets, and use flying wire leads to connect to one another.  It’s a rat’s nest of wires and components that makes servicing a real pain in the neck, and subjects the components to un-needed stress.  Here is a photo of an old amp that features point-to-point wiring:


I think you’ll agree that it’s a mess, and that troubleshooting or servicing would be difficult, and many components are unsupported.

On the other hand, here are two very nicely done tag board amps, the first a Champ-like build, and the other a Marshall type build:



As you can see, the tag board amp circuits are easily traceable for troubleshooting, and the components are all supported by sturdy boards.

It’s for reasons such as these that I choose to use tweed-style cabinets and tag or turret boards in my own amp builds.  My amps are hand wired, but do not feature point-to-point wiring; they feature tag boards or turret boards.  All connections are hand wired, and all component leads are bent and soldered by hand using high quality solder for a sure and lasting connection.

Tuning Your Sound – Balancing Your Pickups

Think of your sound chain. By “sound chain” I mean the links all the way from you, your fingers on your guitar, the acoustic and electrical properties of your guitar – the resonance, pickups, volume/tone controls, bridge – and then on to your amplifier’s capabilities and settings, and then finally to the speaker. When you make any change to any link in this chain, you change the sound. There is a basic, intrinsic sound to your chain. This includes your normal playing style, volume, and tone, along with the standard “sound” of your amp/speaker at your normal settings. For ten years I played a Fender Nashville Telecaster.  Recently I’ve been playing a PRS Custom SE Semi-Hollow.  After a recent practice, the other guitarist, who plays a Fender Stratocaster, commented that he thought I would sound more different than I did, using the PRS versus the Fender.  In spite of change to a completely different type of guitar, I still sounded like me.

There are three places to tune your sound. You, your guitar, and your amp.

One of the often overlooked links in this chain is pickup height. Some experienced players know how great of a difference pickup height can make. They talk of pickup height in terms of finding a “sweet spot” where pickups sound their best and are most responsive and dynamic. Often, but not in any case always, this means lowering your guitars pickups. Guitar techs even apply a term, Stratitis, to the negative effects of having pickups too close to the strings on a standard Fender Stratocaster guitar.

Most electric guitars have two or more pickups, and even many of those with one pickup will have multiple switch or tone settings. Start with the bridge pickup, with the volume and tone wide open on the guitar. Set your amplifier’s tone to where it gets the flattest frequency response. (For a Fender blackface amp, this is usually with the Treble and Bass turned down and the Mids up). Fret the string at the last fret and set the pickup height according the the manufacturer’s spec; this will be the starting point. Bill Lawrence says to fit one nickel under the high E and two under the low E on a Fender Telecaster bridge pickup, then lower the pickup evenly to taste, and then adjust the height of the neck pickup to match the bridge. By the way, a U.S. nickel is about 5/64″ thick (.077″ or 1.95mm).

After setting the pickup height to factor spec, play across the strings in the middle of the neck. Play arpeggios and scales and melodies across the neck. Are the bass strings louder than the treble, or the treble strings too weak or too bright? Lower the pickup on the strongest side to even out the frequency response. Work in even increments, perhaps a quarter turn or half turn at a time. Test again. In this way, you can compensate for a bass-heavy amp or pickup by lowering the bass side of the pickup, or make up for an ice-pick treble sound by lowering the treble side of the pickup.  If lowering the bass or treble side was not enough, you can always lower the pole piece for that string. If lowering worked on the 5th or 2nd string but not on the 6th or 1st, then you can raise the pole piece for that one string.

Once you get the pickup height right for tonal balance, try lowering the entire pickup one whole screw turn and see how it affects the sound.  Do you like it better or not as much. If not as much, then raised it back., and then raise it a turn to see if you like that better.  One person I know says that his DiMarzio Air Classic pickups sound best closer to the strings.  Lace Sensors usually sound best close to the strings.  Fender single coil pickups often sound better farther away.  If lowering the pickup sounds better, then lower it another whole turn and test again.  What you want to find is the sweet spot, where the pickups are the most clear, the most balanced and the most responsive to your playing style.

Does your pickup have adjustable pole-pieces? Probably so if it’s not a Fender-style single coil pickup. Here is a way to adjust each string for best balance. Turn the volume down to where the amplified sound is only slightly louder than the acoustic sound of the guitar. It helps to have a long cable to get some separation from the amp. Again, play some arpeggios and scales and melodies across the neck, listening for strings that are lower in volume. When you hear it louder from the guitar than from the amp, you’ll know. Raise the pole piece underneath that string a quarter or half turn at a time, and then test again. Test again a stage volume, listening for a string that is too quiet in respect to the others or is too prominent.

I once had to choose between two amps. My standard gigging amp was louder, gainier, and was very bright – lots of treble. The other had a much fuller tone, more bass and midrange, and was not as loud. I chose the second for the sweet tone, but then had to deal with the fact that my sound was now too bassy and dominated by the low end. The solution? I ended up lowering the pickups on the bass side to get a more even response. This worked like a charm, and now the tone and response from string to string is very balanced. This allows me freedom of tone and volume settings on the guitar and amp, and greater flexibility in playing styles.  I can dig in on the bass strings without them completely overpowering my sound, and I can accentuate highs or lows as I see fit, just by varying my attack on the strings.

Why You Can’t Sound Like Your Guitar Hero

In the early days of modern popular music, the mid-to-late 1950s, the guitarist had his guitar, a cable, and his amp.  Chuck Berry and Scotty Moore had their Gibsons, Buddy Holly and Buck Owens had their Fenders, and the amplifier of choice was a Fender, usually a Twin or a Bassman.  It was easy to get the sound, if not the style, of the guitar playing on the popular recordings – the double-stop triplets of Chuck Berry, the fast rhythms of Buddy Holly, or the bright country picking of Buck Owens on his Telecaster.  Duane Eddy was the first one to popularizing effects with his rousing instrumental hits, a style he called twang, played on the bass strings of the guitar using tremolo and reverb.

As the 1960s rolled on into the 1970s, these fathers of electric lead guitar gave way to guitar heroes such as Jimmy Page, Eric Clapton, and Jimi Hendrix among many others.  They were well known for playing live with stacks of amps and speakers on the stage.  Many young guitarists bought a Gibson SG or Les Paul or a Fender Stratocaster to sound like their hero.  Finding a good amp was a more difficult task.  A Marshall Stack or Fender Dual Showman was too pricy for most, and way overkill for playing in a garage or small club in the mid 1960s.  Small amps were considered student or beginner models and cheap substitutes.  What many guitarists and listeners didn’t know at the time was that the gear these guys used on stage was not the same gear they used in the studio.  Live sound was primitive compared to what we know in the 21st Century.  Often, your amp had to fill the concert hall, and so a stack of amps was appropriate.  Studios at the time, recording on 4-track or 8-track tape, were designed for a standup bass and a few other instruments, and the microphones and consoles were also designed around certain ideas about volume levels.  While an amp stack might have sounded great on stage, in the studio it was the opposite, and could usually not be turned up past 2.  You certainly couldn’t play at concert levels in the studio.

The famous guitar solo on Led Zeppelin’s Stairway to Heaven was played on a Fender Telecaster using a small Supro amp, as was much of Page’s studio work.  Likewise, most of Eric Clapton’s early famous work was played through a small Fender Champ.  These amps were considered practice, student, or home amps, and not “professional” amps intended for stage work.  In the studio, however, a small amp, cranked wide open and miked, gave a nice big sound.  So the guy who bought a Les Paul and a Marshall, wanting to sound like Jimmy Page, couldn’t duplicate the sound of a Telecaster played through a cranked Supro amp.  While Jimi Hendrix played through stacks of amps on stage – Marshall or Sunn or Dual Showman – in the studio it was a black-faced Fender combo.  Wind Cries Mary is the classic Fender blackface amp tone.

The iconic hit song Layla, featuring both Eric Clapton and Duane Allman on electric guitar, also featured small amps, but with a twist.  Using a 16-track tape recorder, six of those tracks were used for the guitars alone in the first section of the song, with five guitar tracks in the second section.  The famous intro and lead sections of Layla used track 3 for Clapton and Allman solo duplication, track 4 for Allman’s solo, track 5 for Clapton’s rhythm part, track 9, 11 & 12 for Clapton’s harmony parts.  Clapton played lead guitar on one track, and harmonized with his guitar lead on three other tracks.  Now you know why you can’t sound like Derek and The Dominos on Layla when you play at your local club.

In 1978, Mark Knopfler did what no one expected, he created a whole new sound, a new voice, for the electric guitar. At first glance it seems simple. Take a Strat, balance the switch in between notches, and play through a Fender amp, in this case a brown-faced Vibrolux Reverb.  Of course, he also used an Aphex Aural Exciter and an Orange Squeezer compressor, and he didn’t use picks, just his fingers, and he had a style on its own.  Even with a Strat and a Fender combo amp, the best you can hope for is to come close.

U2’s Edge made a career out of playing simple parts through a bank of effects, creating a wall of sound using a myriad of signal processing equipment.  If you’ve got the money and the time…

So let’s say you want to sound like one of your guitar heroes.

Perhaps you liked Jeff Beck’s tone in 1993’s Crazy Legs album.  For that record, he used three amps- a Fender Tremolux and a Fender Bassman in parallel, in a dry wood-paneled room, with two microphones on each amp, a Shure SM-57 dynamic mic and a Neumann U47 tube mic.  At the same time he also ran his guitar through a Fender Concert 2×12” amp, laid on its back pointing upwards in a stone room, with a mic on the ceiling.  The output from the Concert amp was also fed into the speakers of a Fender Twin, which was in an echo chamber. You probably can’t get that tone in your local club, or in your garage.

Maybe you liked Stevie Ray Vaughan’s tone on In Step. He had thirty-something amps in the studio for that one, including a ’59 Bassman, a Dumble Steel String Singer, and a couple of 200W Marshall stacks. Try duplicating that in your music room.

Eric Clapton’s touring gear in the 2005 Cream reunion included two tweed Fender Twin reissue amps, and a Leslie cabinet, a far cry from the triple Marshall stacks of the 1960s.  But once Eric was an unannounced guest at a Little Feat show and the guitar tech was having a fit because the only amp they had for Clapton to play through was a crummy little practice amp. So, for the Little Feat encore, Clapton walks on stage, grabs a spare guitar from the rack, and the tech is bummed because that junky amp is the only amp available and he’s going to sound horrible. Eric Clapton plugged in, goes plink, plink twice, twiddles the knobs, and turns around and sounds like… well, he sounded exactly like Eric Clapton.  Billy Gibbons sounds like ZZ Top whether he’s playing on stage through a 100 Watt Marshall Stack or using a Lead 12 practice amp backstage.

The epitome of the guitar to cable to amp goes back to the early guitar heroes, and to the too long gone Telecaster players such as Buck Owens, Don Rich, and Roy Buchanan, who played their Fender Telecasters straight into their Fender amps, and to the guitar heroes of the ‘60s and 70s who played their guitars through small tube combo amps, and it continues today with blues, jazz, and Indie rock guitarists.

So get yourself a Fender Tele or Strat, or a Les Paul or SG or 335, and plug into a small tube combo amp – a Fender Champ, Deluxe, or Vibrolux, or a Texas Tone 12. Crank it up and you can sound just like… yourself.

After all, as Carlos Santana, a guitarist with a well known distinctive sound, said, “You’re not supposed to sound like anyone else; you’re supposed to sound like you.”

Your tone is in your fingers, in your heart, and in your soul, and played out through your guitar and amp.

Happy New Year.